qsprpred.extra.data.descriptors package
Submodules
qsprpred.extra.data.descriptors.fingerprints module
Extra fingerprints from various packages:
CDKFP
: CDK fingerprintCDKExtendedFP
: CDK extended fingerprintCDKEStateFP
: CDK EState fingerprintCDKGraphOnlyFP
: CDK fingerprint ignoring bond ordersCDKMACCSFP
: CDK MACCS fingerprintCDKPubchemFP
: CDK PubChem fingerprintCDKSubstructureFP
: CDK Substructure fingerprintCDKAtomPairs2DFP
: CDK hashed atom pair fingerprintCDKKlekotaRothFP
: CDK hashed Klekota-Roth fingerprint
- class qsprpred.extra.data.descriptors.fingerprints.CDKAtomPairs2DFP(use_counts: bool = False)[source]
Bases:
Fingerprint
CDK atom pairs and topological fingerprint.
- Variables:
useCounts (bool) – whether to use counts instead of presence/absence
Initialise the fingerprint.
- Parameters:
use_counts – whether to use counts instead of presence/absence
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK atom pairs and topological fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKEStateFP[source]
Bases:
Fingerprint
CDK EState fingerprint.
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK estate fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKExtendedFP[source]
Bases:
Fingerprint
CDK extended fingerprint with 25 additional ring features and isotopic masses.
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK extended fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKFP(size: int = 1024, search_depth: int = 7)[source]
Bases:
Fingerprint
The CDK fingerprint.
Initialize the CDK fingerprint.
- Parameters:
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- property settings
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKGraphOnlyFP(size: int = 1024, search_depth: int = 7)[source]
Bases:
Fingerprint
CDK fingerprint ignoring bond orders.
- Variables:
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK graph only fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKKlekotaRothFP(use_counts: bool = False)[source]
Bases:
Fingerprint
CDK Klekota & Roth fingerprint.
Initialise the fingerprint.
- Parameters:
use_counts (bool) – whether to use counts instead of presence/absence
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK Klekota & Roth fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKMACCSFP[source]
Bases:
Fingerprint
CDK MACCS fingerprint.
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK MACCS fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKPubchemFP[source]
Bases:
Fingerprint
CDK PubChem fingerprint.
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK PubChem fingerprint for the input molecules.
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.fingerprints.CDKSubstructureFP(use_counts: bool = False)[source]
Bases:
Fingerprint
CDK Substructure fingerprint.
Based on SMARTS patterns for functional group classification by Christian Laggner.
- Variables:
useCounts (bool) – whether to use counts instead of presence/absence
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Return the CDK Substructure fingerprint for the input molecules.
- Parameters:
mols (list[Chem.Mol]) – molecules to obtain the fingerprint of
- Returns:
np.ndarray
of fingerprints formols
- Return type:
np.ndarray
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
qsprpred.extra.data.descriptors.sets module
Module with definitions of various extra descriptor sets:
Mordred
: Descriptors from molecular descriptor calculation software Mordred.Mold2
: Descriptors from molecular descriptor calculation software Mold2.PaDEL
: Descriptors from molecular descriptor calculation software PaDEL.ProDec
: Protein descriptors from the ProDec package.
- class qsprpred.extra.data.descriptors.sets.ExtendedValenceSignature(depth: int | list[int])[source]
Bases:
DescriptorSet
SMILES signature based on extended valence sequence from
The Signature Molecular Descriptor.
1. Using Extended Valence Sequences in QSAR and QSPR StudiesJean-Loup Faulon, Donald P. Visco, and Ramdas S. Pophale Journal of Chemical Information and Computer Sciences 2003 43 (3), 707-720 DOI: 10.1021/ci020345w
Initialize a ExtendedValenceSignature calculator
- Parameters:
depth – depth of the signature
- property descriptors
Return a list of current descriptor names.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Method to calculate descriptors for a list of molecules.
This method should use molecules as they are without any preparation. Any preparation steps should be defined in the
DescriptorSet.prepMols
method., which is picked up by the mainDescriptorSet.__call__
.
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.sets.Mold2(descs: list[str] | None = None)[source]
Bases:
DescriptorSet
Descriptors from molecular descriptor calculation software Mold2.
From https://github.com/OlivierBeq/Mold2_pywrapper. Initialize the descriptor with no arguments. All descriptors are always calculated.
- Parameters:
descs – names of Mold2 descriptors to be calculated (e.g. D001)
Initialize a Mold2 descriptor calculator.
- property descriptors
Return a list of current descriptor names.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Method to calculate descriptors for a list of molecules.
This method should use molecules as they are without any preparation. Any preparation steps should be defined in the
DescriptorSet.prepMols
method., which is picked up by the mainDescriptorSet.__call__
.
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.sets.Mordred(descs: list[str] | None = None, version: str | None = None, ignore_3D: bool = False, config: str | None = None)[source]
Bases:
DescriptorSet
Descriptors from molecular descriptor calculation software Mordred.
From https://github.com/mordred-descriptor/mordred.
- Variables:
Initialize the descriptor with the same arguments as you would pass to
DescriptorsCalculator
function of Mordred, except thedescs
argument, which can also be alist
of mordred descriptor names instead of a mordred descriptor module.- Parameters:
- property descriptors
Return a list of current descriptor names.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Method to calculate descriptors for a list of molecules.
This method should use molecules as they are without any preparation. Any preparation steps should be defined in the
DescriptorSet.prepMols
method., which is picked up by the mainDescriptorSet.__call__
.
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.sets.PaDEL(descs: list[str] | None = None, ignore_3d: bool = True, n_jobs: int | None = None)[source]
Bases:
DescriptorSet
Descriptors from molecular descriptor calculation software PaDEL.
From https://github.com/OlivierBeq/PaDEL_pywrapper.
Initialize a PaDEL calculator
- Parameters:
descs – list of PaDEL descriptor short names
ignore_3d (bool) – skip 3D descriptor calculation
- property descriptors
Return a list of current descriptor names.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any]], *args, **kwargs) ndarray [source]
Method to calculate descriptors for a list of molecules.
This method should use molecules as they are without any preparation. Any preparation steps should be defined in the
DescriptorSet.prepMols
method., which is picked up by the mainDescriptorSet.__call__
.
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.sets.ProDec(sets: list[str] | None = None, msa_provider: ~qsprpred.extra.data.utils.msa_calculator.MSAProvider = <qsprpred.extra.data.utils.msa_calculator.ClustalMSA object>)[source]
Bases:
ProteinDescriptorSet
Protein descriptors from the ProDec package.
See https://github.com/OlivierBeq/ProDEC.
- Variables:
sets (list[str]) – list of ProDec descriptor names (see https://github.com/OlivierBeq/ProDEC)
factory (prodec.ProteinDescriptors) – factory to calculate descriptors
Initialize a ProDec calculator.
- Parameters:
sets – list of ProDec descriptor names, if
None
, all available are used (see https://github.com/OlivierBeq/ProDEC)
- static calculateDescriptor(factory: ProteinDescriptors, msa: dict[str, str], descriptor: str)[source]
Calculate a protein descriptor for given targets using a given multiple sequence alignment.
- Parameters:
factory (ProteinDescriptors) – factory to create the descriptor
msa (dict) – mapping of accession keys to sequences from the multiple sequence alignment
descriptor (str) – name of the descriptor to calculate (see https://github.com/OlivierBeq/ProDEC)
- Returns:
a data frame of descriptor values of shape (acc_keys, n_descriptors), indexed by acc_keys
- property descriptors
Return a list of current descriptor names.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any] | dict[str, str]], *args, **kwargs) ndarray
Get array of calculated protein descriptors for given targets.
- Parameters:
- Returns:
array of calculated protein descriptors
- Return type:
np.ndarray
- getProteinDescriptors(acc_keys: list[str], sequences: dict[str, str] | None = None, **kwargs) DataFrame [source]
Calculate the protein descriptors for a given target.
- Parameters:
acc_keys – target accession keys, defines the resulting index of the returned
pd.DataFrame
sequences – optional list of protein sequences matched to the accession keys
**kwargs – any additional data passed from
ProteinDescriptorCalculator
- Returns:
a data frame of descriptor values of shape (acc_keys, n_descriptors),
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
- class qsprpred.extra.data.descriptors.sets.ProteinDescriptorSet(id_prop: str | None = None)[source]
Bases:
DescriptorSet
Abstract base class for protein descriptor sets.
Initialize the processor with the name of the property that contains the molecule’s unique identifier.
- Parameters:
id_prop (str) – Name of the property that contains the molecule’s unique identifier. Defaults to “QSPRID”.
- property dtype
Convert the descriptor values to this type.
- getDescriptors(mols: list[rdkit.Chem.rdchem.Mol], props: dict[str, list[Any] | dict[str, str]], *args, **kwargs) ndarray [source]
Get array of calculated protein descriptors for given targets.
- Parameters:
- Returns:
array of calculated protein descriptors
- Return type:
np.ndarray
- abstract getProteinDescriptors(acc_keys: list[str], sequences: dict[str, str] | None = None, **kwargs) DataFrame [source]
Calculate the protein descriptors for a given target.
- Parameters:
- Returns:
a data frame of descriptor values of shape (acc_keys, n_descriptors), indexed by
acc_keys
- Return type:
pd.DataFrame
- property isFP
Return True if descriptor set is a binary fingerprint.
- static iterMols(mols: list[str | rdkit.Chem.rdchem.Mol], to_list=False) list[rdkit.Chem.rdchem.Mol] | Generator[Mol, None, None]
Create a molecule generator or list from RDKit molecules or SMILES.
- Parameters:
mols – list of molecules (SMILES
str
or RDKit Mol)to_list – if True, return a list instead of a generator
- Returns:
a list or generator of RDKit molecules
- prepMols(mols: list[str | rdkit.Chem.rdchem.Mol]) list[rdkit.Chem.rdchem.Mol]
Prepare the molecules for descriptor calculation.
- property requiredProps: list[str]
The properties required by the processor. This is to inform the caller that the processor requires certain properties to be passed to the
__call__
method. By default, no properties are required.
- toFile(filename: str) str
Serialize object to a JSON file. This JSON file should contain all data necessary to reconstruct the object.
- toJSON() str
- Serialize object to a JSON string. This JSON string should
contain all data necessary to reconstruct the object.
- Returns:
JSON string of the object
- Return type:
json (str)
- transformToFeatureNames()
- static treatInfs(df: DataFrame) DataFrame
Replace infinite values by NaNs.
- Parameters:
df – dataframe to treat
- Returns:
dataframe with infinite values replaced by NaNs
qsprpred.extra.data.descriptors.tests module
- class qsprpred.extra.data.descriptors.tests.TestDescriptorSetsExtra(methodName='runTest')[source]
Bases:
DataSetsMixInExtras
,QSPRTestCase
Test descriptor sets with extra features.
- Variables:
dataset (QSPRDataset) – dataset for testing, shuffled
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createPCMDataSet(name: str = 'QSPRDataset_test_pcm', target_props: list[qsprpred.tasks.TargetProperty] | list[dict] = [{'name': 'pchembl_value_Median', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings: dict | None = None, protein_col: str = 'accession', random_state: int | None = None)
Create a small dataset for testing purposes.
- Parameters:
name (str, optional) – name of the dataset. Defaults to “QSPRDataset_test”.
target_props (list[TargetProperty] | list[dict], optional) – target properties.
preparation_settings (dict | None, optional) – preparation settings. Defaults to None.
protein_col (str, optional) – name of the column with protein accessions. Defaults to “accession”.
random_state (int, optional) – random seed to use in the dataset. Defaults to
None
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors() list[qsprpred.data.descriptors.sets.DescriptorSet]
Return a list of all available molecule descriptor sets.
- Returns:
list of
MoleculeDescriptorSet
objects- Return type:
- classmethod getAllProteinDescriptors() list[qsprpred.extra.data.descriptors.sets.ProteinDescriptorSet]
Return a list of all available protein descriptor sets.
- Returns:
list of
ProteinDescriptorSet
objects- Return type:
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Return the default descriptor calculator combo.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getPCMDF() DataFrame
Return a test dataframe with PCM data.
- Returns:
dataframe with PCM data
- Return type:
pd.DataFrame
- getPCMSeqProvider() Callable[[list[str]], tuple[dict[str, str], dict[str, dict]]]
Return a function that provides sequences for given accessions.
- getPCMTargetsDF() DataFrame
Return a test dataframe with PCM targets and their sequences.
- Returns:
dataframe with PCM targets and their sequences
- Return type:
pd.DataFrame
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Create the directories that are used for testing.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testPaDELFingerprints = None
- testPaDELFingerprints_0(**kw)
- testPaDELFingerprints_1(**kw)
- testPaDELFingerprints_2(**kw)
- testPaDELFingerprints_3(**kw)
- testPaDELFingerprints_4(**kw)
- testPaDELFingerprints_5(**kw)
- testPaDELFingerprints_6(**kw)
- testPaDELFingerprints_7(**kw)
- testPaDELFingerprints_8(**kw)
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.extra.data.descriptors.tests.TestDescriptorsExtra(methodName='runTest')[source]
Bases:
DataSetsMixInExtras
,DescriptorInDataCheckMixIn
,QSPRTestCase
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- checkDataSetContainsDescriptorSet(dataset, desc_set, prep_combo, target_props)
Check if a descriptor set is in a data set.
- checkDescriptors(dataset: QSPRDataset, target_props: list[dict | qsprpred.tasks.TargetProperty])
Check if information about descriptors is consistent in the data set. Checks if calculators are consistent with the descriptors contained in the data set. This is tested also before and after serialization.
- Parameters:
dataset (QSPRDataset) – The data set to check.
target_props (List of dicts or TargetProperty) – list of target properties
- Raises:
AssertionError – If the consistency check fails.
- checkFeatures(ds: QSPRDataset, expected_length: int)
Check if the feature names and the feature matrix of a data set is consistent with expected number of variables.
- Parameters:
ds (QSPRDataset) – The data set to check.
expected_length (int) – The expected number of features.
- Raises:
AssertionError – If the feature names or the feature matrix is not consistent
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createPCMDataSet(name: str = 'QSPRDataset_test_pcm', target_props: list[qsprpred.tasks.TargetProperty] | list[dict] = [{'name': 'pchembl_value_Median', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings: dict | None = None, protein_col: str = 'accession', random_state: int | None = None)
Create a small dataset for testing purposes.
- Parameters:
name (str, optional) – name of the dataset. Defaults to “QSPRDataset_test”.
target_props (list[TargetProperty] | list[dict], optional) – target properties.
preparation_settings (dict | None, optional) – preparation settings. Defaults to None.
protein_col (str, optional) – name of the column with protein accessions. Defaults to “accession”.
random_state (int, optional) – random seed to use in the dataset. Defaults to
None
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors() list[qsprpred.data.descriptors.sets.DescriptorSet]
Return a list of all available molecule descriptor sets.
- Returns:
list of
MoleculeDescriptorSet
objects- Return type:
- classmethod getAllProteinDescriptors() list[qsprpred.extra.data.descriptors.sets.ProteinDescriptorSet]
Return a list of all available protein descriptor sets.
- Returns:
list of
ProteinDescriptorSet
objects- Return type:
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- static getDatSetName(desc_set, target_props)
Get a unique name for a data set.
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Return the default descriptor calculator combo.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getPCMDF() DataFrame
Return a test dataframe with PCM data.
- Returns:
dataframe with PCM data
- Return type:
pd.DataFrame
- getPCMSeqProvider() Callable[[list[str]], tuple[dict[str, str], dict[str, dict]]]
Return a function that provides sequences for given accessions.
- getPCMTargetsDF() DataFrame
Return a test dataframe with PCM targets and their sequences.
- Returns:
dataframe with PCM targets and their sequences
- Return type:
pd.DataFrame
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Create the directories that are used for testing.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testDescriptorsExtraAll = None
- testDescriptorsExtraAll_00_Mordred(**kw)
Test the calculation of extra descriptors with data preparation [with _=’Mordred’, desc_set=<qsprpred.extra.data.descriptors…ordred object at 0x7efff578c770>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_01_CDKFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKFP’, desc_set=<qsprpred.extra.data.descriptors….CDKFP object at 0x7efff5b2f560>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_02_CDKExtendedFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKExtendedFP’, desc_set=<qsprpred.extra.data.descriptors…ndedFP object at 0x7efff6b6be60>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_03_CDKEStateFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKEStateFP’, desc_set=<qsprpred.extra.data.descriptors…tateFP object at 0x7efff6166090>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_04_CDKGraphOnlyFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKGraphOnlyFP’, desc_set=<qsprpred.extra.data.descriptors…OnlyFP object at 0x7efff6af2420>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_05_CDKMACCSFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKMACCSFP’, desc_set=<qsprpred.extra.data.descriptors…ACCSFP object at 0x7efff5d5f680>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_06_CDKPubchemFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKPubchemFP’, desc_set=<qsprpred.extra.data.descriptors…chemFP object at 0x7efff5882780>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_07_CDKSubstructureFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKSubstructureFP’, desc_set=<qsprpred.extra.data.descriptors…tureFP object at 0x7efff5c229c0>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_08_CDKKlekotaRothFPCount(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKKlekotaRothFPCount’, desc_set=<qsprpred.extra.data.descriptors…RothFP object at 0x7efff56c1af0>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_09_CDKAtomPairs2DFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKAtomPairs2DFP’, desc_set=<qsprpred.extra.data.descriptors…rs2DFP object at 0x7efff56c2690>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_10_CDKSubstructureFPCount(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKSubstructureFPCount’, desc_set=<qsprpred.extra.data.descriptors…tureFP object at 0x7efff56c16a0>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_11_CDKKlekotaRothFP(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKKlekotaRothFP’, desc_set=<qsprpred.extra.data.descriptors…RothFP object at 0x7efff56c2510>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_12_CDKAtomPairs2DFPCount(**kw)
Test the calculation of extra descriptors with data preparation [with _=’CDKAtomPairs2DFPCount’, desc_set=<qsprpred.extra.data.descriptors…rs2DFP object at 0x7efff56c1d00>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_13_PaDEL(**kw)
Test the calculation of extra descriptors with data preparation [with _=’PaDEL’, desc_set=<qsprpred.extra.data.descriptors….PaDEL object at 0x7efff5504ce0>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- testDescriptorsExtraAll_14_ExtendedValenceSignature(**kw)
Test the calculation of extra descriptors with data preparation [with _=’ExtendedValenceSignature’, desc_set=<qsprpred.extra.data.descriptors…nature object at 0x7efff55576e0>, target_props=[{‘name’: ‘CL’, ‘task’: <TargetTasks.REGRESSION: ‘REGRESSION’>}]].
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.extra.data.descriptors.tests.TestDescriptorsPCM(methodName='runTest')[source]
Bases:
DataSetsMixInExtras
,DescriptorInDataCheckMixIn
,TestCase
Test the calculation of PCM descriptors with data preparation.
- Variables:
defaultMSA (MSAProvider) – Default MSA provider.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- checkDataSetContainsDescriptorSet(dataset, desc_set, prep_combo, target_props)
Check if a descriptor set is in a data set.
- checkDescriptors(dataset: QSPRDataset, target_props: list[dict | qsprpred.tasks.TargetProperty])
Check if information about descriptors is consistent in the data set. Checks if calculators are consistent with the descriptors contained in the data set. This is tested also before and after serialization.
- Parameters:
dataset (QSPRDataset) – The data set to check.
target_props (List of dicts or TargetProperty) – list of target properties
- Raises:
AssertionError – If the consistency check fails.
- checkFeatures(ds: QSPRDataset, expected_length: int)
Check if the feature names and the feature matrix of a data set is consistent with expected number of variables.
- Parameters:
ds (QSPRDataset) – The data set to check.
expected_length (int) – The expected number of features.
- Raises:
AssertionError – If the feature names or the feature matrix is not consistent
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createPCMDataSet(name: str = 'QSPRDataset_test_pcm', target_props: list[qsprpred.tasks.TargetProperty] | list[dict] = [{'name': 'pchembl_value_Median', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings: dict | None = None, protein_col: str = 'accession', random_state: int | None = None)
Create a small dataset for testing purposes.
- Parameters:
name (str, optional) – name of the dataset. Defaults to “QSPRDataset_test”.
target_props (list[TargetProperty] | list[dict], optional) – target properties.
preparation_settings (dict | None, optional) – preparation settings. Defaults to None.
protein_col (str, optional) – name of the column with protein accessions. Defaults to “accession”.
random_state (int, optional) – random seed to use in the dataset. Defaults to
None
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors() list[qsprpred.data.descriptors.sets.DescriptorSet]
Return a list of all available molecule descriptor sets.
- Returns:
list of
MoleculeDescriptorSet
objects- Return type:
- classmethod getAllProteinDescriptors() list[qsprpred.extra.data.descriptors.sets.ProteinDescriptorSet]
Return a list of all available protein descriptor sets.
- Returns:
list of
ProteinDescriptorSet
objects- Return type:
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- static getDatSetName(desc_set, target_props)
Get a unique name for a data set.
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Return the default descriptor calculator combo.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getPCMDF() DataFrame
Return a test dataframe with PCM data.
- Returns:
dataframe with PCM data
- Return type:
pd.DataFrame
- getPCMSeqProvider() Callable[[list[str]], tuple[dict[str, str], dict[str, dict]]]
Return a function that provides sequences for given accessions.
- getPCMTargetsDF() DataFrame
Return a test dataframe with PCM targets and their sequences.
- Returns:
dataframe with PCM targets and their sequences
- Return type:
pd.DataFrame
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Create the directories that are used for testing.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testDescriptorsPCMAll = None
- testDescriptorsPCMAll_0_ProDec_Zscale_Hellberg_MULTICLASS(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Zscale Hellberg_MULTICLASS’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff5557980>, target_props=[{‘name’: ‘pchembl_value_Median’…>, ‘th’: [2.0, 5.5, 6.5, 12.0]}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- testDescriptorsPCMAll_1_ProDec_Sneath_MULTICLASS(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Sneath_MULTICLASS’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff5a043b0>, target_props=[{‘name’: ‘pchembl_value_Median’…>, ‘th’: [2.0, 5.5, 6.5, 12.0]}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- testDescriptorsPCMAll_2_ProDec_Zscale_Hellberg_REGRESSION(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Zscale Hellberg_REGRESSION’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff567c950>, target_props=[{‘name’: ‘pchembl_value_Median’…asks.REGRESSION: ‘REGRESSION’>}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- testDescriptorsPCMAll_3_ProDec_Sneath_REGRESSION(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Sneath_REGRESSION’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff5443470>, target_props=[{‘name’: ‘pchembl_value_Median’…asks.REGRESSION: ‘REGRESSION’>}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- testDescriptorsPCMAll_4_ProDec_Zscale_Hellberg_Multitask(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Zscale Hellberg_Multitask’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff54e84a0>, target_props=[{‘name’: ‘pchembl_value_Median’…S: ‘SINGLECLASS’>, ‘th’: [6.5]}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- testDescriptorsPCMAll_5_ProDec_Sneath_Multitask(**kw)
Tests all available descriptor sets with data set preparation [with _=’ProDec_Sneath_Multitask’, desc_set=<qsprpred.extra.data.descriptors…ProDec object at 0x7efff5361490>, target_props=[{‘name’: ‘pchembl_value_Median’…S: ‘SINGLECLASS’>, ‘th’: [6.5]}]].
Note that they are not checked with all possible settings and all possible preparations, but only with the default settings provided by
DataSetsPathMixIn.getDefaultPrep()
. The list itself is defined and configured byDataSetsPathMixIn.getAllDescriptors()
, so if you need a specific descriptor tested, add it there.
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.extra.data.descriptors.tests.TestPCMDataSet(methodName='runTest')[source]
Bases:
DataSetsMixInExtras
,TestCase
Test the PCM data set features.
- Variables:
dataset (QSPRDataset) – dataset for testing
sampleDescSet (DescriptorSet) – descriptor set for testing
defaultMSA (BioPythonMSA) – MSA provider for testing
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createPCMDataSet(name: str = 'QSPRDataset_test_pcm', target_props: list[qsprpred.tasks.TargetProperty] | list[dict] = [{'name': 'pchembl_value_Median', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings: dict | None = None, protein_col: str = 'accession', random_state: int | None = None)
Create a small dataset for testing purposes.
- Parameters:
name (str, optional) – name of the dataset. Defaults to “QSPRDataset_test”.
target_props (list[TargetProperty] | list[dict], optional) – target properties.
preparation_settings (dict | None, optional) – preparation settings. Defaults to None.
protein_col (str, optional) – name of the column with protein accessions. Defaults to “accession”.
random_state (int, optional) – random seed to use in the dataset. Defaults to
None
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors() list[qsprpred.data.descriptors.sets.DescriptorSet]
Return a list of all available molecule descriptor sets.
- Returns:
list of
MoleculeDescriptorSet
objects- Return type:
- classmethod getAllProteinDescriptors() list[qsprpred.extra.data.descriptors.sets.ProteinDescriptorSet]
Return a list of all available protein descriptor sets.
- Returns:
list of
ProteinDescriptorSet
objects- Return type:
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Return the default descriptor calculator combo.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getPCMDF() DataFrame
Return a test dataframe with PCM data.
- Returns:
dataframe with PCM data
- Return type:
pd.DataFrame
- getPCMSeqProvider() Callable[[list[str]], tuple[dict[str, str], dict[str, dict]]]
Return a function that provides sequences for given accessions.
- getPCMTargetsDF() DataFrame
Return a test dataframe with PCM targets and their sequences.
- Returns:
dataframe with PCM targets and their sequences
- Return type:
pd.DataFrame
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Create the directories that are used for testing.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testProDec = None
- testProDec_0_MAFFT(**kw)
- testProDec_1_ClustalMSA(**kw)
- testSerialization = None
- testSerialization_0_MAFFT(**kw)
Test the serialization of dataset with data split [with _=’MAFFT’, msa_provider_cls=<class ‘qsprpred.extra.data.utils.msa_calculator.MAFFT’>].
- Parameters:
msa_provider_cls (BioPythonMSA) – MSA provider class
- testSerialization_1_ClustalMSA(**kw)
Test the serialization of dataset with data split [with _=’ClustalMSA’, msa_provider_cls=<class ‘qsprpred.extra.data.utils.msa_calculator.ClustalMSA’>].
- Parameters:
msa_provider_cls (BioPythonMSA) – MSA provider class
- validate_split(dataset)
Check if the split has the data it should have after splitting.