qsprpred.plotting package
Submodules
qsprpred.plotting.base_plot module
This module contains the base class for all model plots.
- class qsprpred.plotting.base_plot.ModelPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
ABC
Base class for all model plots.
- Variables:
modelOuts (dict[QSPRModel, str]) – dictionary of model output paths
modelNames (dict[QSPRModel, str]) – dictionary of model names
cvPaths (dict[QSPRModel, str]) – dictionary of models mapped to their cross-validation set results paths
indPaths (dict[QSPRModel, str]) – dictionary of models mapped to their independent test set results paths
Initialize the base class for all model plots.
- checkModel(model: QSPRModel) tuple[str, str] [source]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- abstract getSupportedTasks() list[str] [source]
Get the types of models this plotter supports.
- Returns:
list of supported
TargetTasks
- Return type:
list
ofTargetTasks
qsprpred.plotting.classification module
Plotting functions for classification models.
- class qsprpred.plotting.classification.CalibrationPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
ClassifierPlot
Plot of calibration curve for a given model.
Initialize the base class for all model plots.
- calculateMultiClassMetrics(df, average_type, n_classes)
Calculate metrics for a given dataframe.
- calculateSingleClassMetrics(df)
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
Get summary statistics for classification results.
- getSupportedTasks() List[ModelTasks] [source]
Return a list of tasks supported by this plotter.
- make(save: bool = True, show: bool = False, property_name: str | None = None, validation: str = 'cv', fig_size: tuple = (6, 6)) list[matplotlib.axes._axes.Axes] [source]
Make the plot for a given validation type.
- Parameters:
property_name (str) – name of the property to plot (should correspond to the prefix of the column names in the data files). If
None
, the first property in the model’stargetProperties
list will be used.validation (str) – The type of validation data to use. Can be either ‘cv’ for cross-validation or ‘ind’ for independent test set.
fig_size (tuple) – The size of the figure to create.
save (bool) – Whether to save the plot to a file.
show (bool) – Whether to display the plot.
- Returns:
A list of matplotlib axes objects containing the plots.
- Return type:
axes (list[plt.Axes])
- makeCV(model: QSPRModel, property_name: str, n_bins: int = 10) Axes [source]
Make the plot for a given model using cross-validation data.
- Parameters:
- Returns:
the axes object containing the plot.
- Return type:
ax (matplotlib.axes.Axes)
- makeInd(model: QSPRModel, property_name: str, n_bins: int = 10) Axes [source]
Make the plot for a given model using independent test data.
- Parameters:
- Returns:
the axes object containing the plot.
- Return type:
ax (matplotlib.axes.Axes)
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- prepareClassificationResults() DataFrame
Prepare classification results dataframe for plotting.
- Returns:
the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.classification.ClassifierPlot(models: list[qsprpred.models.model.QSPRModel])[source]
-
Base class for plots of classification models.
Initialize the base class for all model plots.
- calculateMultiClassMetrics(df, average_type, n_classes)[source]
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSupportedTasks() List[ModelTasks] [source]
Return a list of tasks supported by this plotter.
- abstract make(save: bool = True, show: bool = False) Any
Make the plot.
Opens a window to show the plot or returns a plot representation that can be directly shown in a notebook or saved to a file.
- prepareAssessment(assessment_df: DataFrame) DataFrame [source]
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.classification.ConfusionMatrixPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
ClassifierPlot
Plot of confusion matrix for a given model as a heatmap.
Initialize the base class for all model plots.
- calculateMultiClassMetrics(df, average_type, n_classes)
Calculate metrics for a given dataframe.
- calculateSingleClassMetrics(df)
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getConfusionMatrixDict(df: DataFrame) dict [source]
Create dictionary of confusion matrices for each model, property and fold
- Parameters:
df (pd.DataFrame) – the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Returns:
dictionary of confusion matrices for each model, property and fold
- Return type:
- getSummary()
Get summary statistics for classification results.
- getSupportedTasks() List[ModelTasks]
Return a list of tasks supported by this plotter.
- make(save: bool = True, show: bool = False, out_path: str | None = None) tuple[dict, matplotlib.axes._axes.Axes] [source]
Make confusion matrix heatmap for each model, property and fold
- Parameters:
save (bool) – whether to save the plot
show (bool) – whether to show the plot
out_path (str | None) – path to save the plot to, e.g. “results/plot.png”, the plots will be saved to this path with the plot identifier appended before the extension, If
None
, the plots will be saved to each model’s output directory.
- Returns:
dictionary of confusion matrices for each model, property and fold list[plt.axes.Axes]:
a list of matplotlib axes objects containing the plots.
- Return type:
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- prepareClassificationResults() DataFrame
Prepare classification results dataframe for plotting.
- Returns:
the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.classification.MetricsPlot(models: List[QSPRModel], metrics: List[Literal['f1', 'matthews_corrcoef', 'precision', 'recall', 'accuracy', 'calibration_error', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo']] = ['f1', 'matthews_corrcoef', 'precision', 'recall', 'accuracy', 'calibration_error', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo'])[source]
Bases:
ClassifierPlot
Plot of metrics for a given model.
- Variables:
Initialise the metrics plot.
- Parameters:
- calculateMultiClassMetrics(df, average_type, n_classes)
Calculate metrics for a given dataframe.
- calculateSingleClassMetrics(df)
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
Get summary statistics for classification results.
- getSupportedTasks() List[ModelTasks]
Return a list of tasks supported by this plotter.
- make(save: bool = True, show: bool = False, out_path: str | None = None) tuple[List[seaborn.axisgrid.FacetGrid], pandas.core.frame.DataFrame] [source]
Make the plot for a given validation type.
- Parameters:
property_name (str) – name of the property to plot (should correspond to the prefix of the column names in the data files).
save (bool) – Whether to save the plot to a file.
show (bool) – Whether to display the plot.
out_path (str | None) – Path to save the plots to, e.g. “results/plot.png”, the plot will be saved to this path with the metric name appended before the extension, e.g. “results/plot_roc_auc.png”. If
None
, the plots will be saved to each model’s output directory.
- Returns:
the seaborn FacetGrid objects used to make the plot pd.DataFrame:
A dataframe containing the summary data generated.
- Return type:
figures (list[sns.FacetGrid])
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- prepareClassificationResults() DataFrame
Prepare classification results dataframe for plotting.
- Returns:
the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.classification.PRCPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
ClassifierPlot
Plot of Precision-Recall curve for a given model.
Initialize the base class for all model plots.
- calculateMultiClassMetrics(df, average_type, n_classes)
Calculate metrics for a given dataframe.
- calculateSingleClassMetrics(df)
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
Get summary statistics for classification results.
- getSupportedTasks() List[ModelTasks] [source]
Return a list of tasks supported by this plotter.
- make(save: bool = True, show: bool = False, property_name: str | None = None, validation: str = 'cv', fig_size: tuple = (6, 6))[source]
Make the plot for a given validation type.
- Parameters:
property_name (str) – name of the property to plot (should correspond to the prefix of the column names in the data files). If
None
, the first property in the model’stargetProperties
list will be used.validation (str) – The type of validation data to use. Can be either ‘cv’ for cross-validation or ‘ind’ for independent test set.
fig_size (tuple) – The size of the figure to create.
save (bool) – Whether to save the plot to a file.
show (bool) – Whether to display the plot.
- Returns:
A list of matplotlib axes objects containing the plots.
- Return type:
axes (list)
- makeCV(model: QSPRModel, property_name: str) Axes [source]
Make the plot for a given model using cross-validation data.
- makeInd(model: QSPRModel, property_name: str) Axes [source]
Make the plot for a given model using independent test data.
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- prepareClassificationResults() DataFrame
Prepare classification results dataframe for plotting.
- Returns:
the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.classification.ROCPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
ClassifierPlot
Plot of ROC-curve (receiver operating characteristic curve) for a given classification model.
Initialize the base class for all model plots.
- calculateMultiClassMetrics(df, average_type, n_classes)
Calculate metrics for a given dataframe.
- calculateSingleClassMetrics(df)
Calculate metrics for a given dataframe.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
Get summary statistics for classification results.
- getSupportedTasks() List[ModelTasks] [source]
Return a list of tasks supported by this plotter.
- make(save: bool = True, show: bool = False, property_name: str | None = None, validation: str = 'cv', fig_size: tuple = (6, 6)) list[matplotlib.axes._axes.Axes] [source]
Make the ROC plot for given validation sets.
- Parameters:
property_name (str) – name of the predicted property to plot (should correspond to the prefix of the column names in
cvPaths
orindPaths
files). IfNone
, the first property in the model’stargetProperties
list will be used.validation (str) – The type of validation set to read data for. Can be either ‘cv’ for cross-validation or ‘ind’ for independent test set.
fig_size (tuple) – The size of the figure to create.
save (bool) – Whether to save the plot to a file.
show (bool) – Whether to display the plot.
- Returns:
A list of matplotlib axes objects containing the plots.
- Return type:
axes (list[plt.Axes])
- makeCV(model: QSPRModel, property_name: str) Axes [source]
Make the plot for a given model using cross-validation data.
Many thanks to the scikit-learn documentation since the code below borrows heavily from the example at:
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
- makeInd(model: QSPRModel, property_name: str) Axes [source]
Make the ROC plot for a given model using independent test data.
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction/ProbabilityClass_X>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Class, Set
- Return type:
pd.DataFrame
- prepareClassificationResults() DataFrame
Prepare classification results dataframe for plotting.
- Returns:
the dataframe containing the classficiation results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
qsprpred.plotting.grid_visualizers module
- qsprpred.plotting.grid_visualizers.interactive_grid(mols, *args, molsPerRow=5, **kwargs)[source]
install mols2grid with pip to use
qsprpred.plotting.regression module
Module for plotting regression models.
- class qsprpred.plotting.regression.CorrelationPlot(models: list[qsprpred.models.model.QSPRModel])[source]
Bases:
RegressionPlot
Class to plot the results of regression models. Plot predicted pX_train vs real pX_train.
Initialize the base class for all model plots.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
calculate the R2 and RMSE for each model per set (cross-validation or independent test)
- getSupportedTasks() list[qsprpred.tasks.ModelTasks]
Return a list of supported model tasks.
- make(save: bool = True, show: bool = False, out_path: str | None = None) tuple[seaborn.axisgrid.FacetGrid, pandas.core.frame.DataFrame] [source]
Plot the results of regression models. Plot predicted pX_train vs real pX_train.
- Parameters:
- Returns:
the seaborn FacetGrid object used to make the plot pd.DataFrame:
the summary data used to make the plot
- Return type:
g (sns.FacetGrid)
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- prepareRegressionResults() DataFrame
Prepare regression results dataframe for plotting.
- Returns:
the dataframe containing the regression results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.regression.RegressionPlot(models: list[qsprpred.models.model.QSPRModel])[source]
-
Base class for all regression plots.
Initialize the base class for all model plots.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()[source]
calculate the R2 and RMSE for each model per set (cross-validation or independent test)
- getSupportedTasks() list[qsprpred.tasks.ModelTasks] [source]
Return a list of supported model tasks.
- abstract make(save: bool = True, show: bool = False) Any
Make the plot.
Opens a window to show the plot or returns a plot representation that can be directly shown in a notebook or saved to a file.
- prepareAssessment(assessment_df: DataFrame) DataFrame [source]
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- class qsprpred.plotting.regression.WilliamsPlot(models: list[qsprpred.models.model.QSPRModel], datasets: list[qsprpred.data.tables.qspr.QSPRDataset])[source]
Bases:
RegressionPlot
Williams plot; plot of standardized residuals versus leverages
Initialize the base class for all model plots.
- checkModel(model: QSPRModel) tuple[str, str]
Check if the model has been evaluated and saved. If not, raise an exception.
- Parameters:
model (QSPRModel) – model to check
- Returns:
path to the cross-validation set results file indPath (str): path to the independent test set results file
- Return type:
cvPath (str)
- Raises:
ValueError – if the model type is not supported
- getSummary()
calculate the R2 and RMSE for each model per set (cross-validation or independent test)
- getSupportedTasks() list[qsprpred.tasks.ModelTasks]
Return a list of supported model tasks.
- make(save: bool = True, show: bool = False, out_path: str | None = None) tuple[seaborn.axisgrid.FacetGrid, pandas.core.frame.DataFrame, List[float]] [source]
make Williams plot
- Parameters:
- Returns:
the seaborn FacetGrid object used to make the plot pd.DataFrame:
the leverages and standardized residuals for each compound
- dict[str, float]:
the h* values for the datasets
- Return type:
g (sns.FacetGrid)
- prepareAssessment(assessment_df: DataFrame) DataFrame
Prepare assessment dataframe for plotting
- Parameters:
assessment_df (pd.DataFrame) – the assessment dataframe containing the experimental and predicted values for each property. The dataframe should have the following columns: QSPRID, Fold (opt.), <property_name>_<suffixes>_<Label/Prediction>
- Returns:
The dataframe containing the assessment results, columns: QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
- prepareRegressionResults() DataFrame
Prepare regression results dataframe for plotting.
- Returns:
the dataframe containing the regression results, columns: Model, QSPRID, Fold, Property, Label, Prediction, Set
- Return type:
pd.DataFrame
qsprpred.plotting.tests module
Tests for plotting module.
- class qsprpred.plotting.tests.ConfusionMatrixPlotTest(methodName='runTest')[source]
Bases:
PlottingTest
Test confusion matrix plotting class.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testPlotSingle = None
- testPlotSingle_0_binary(**kw)
Test plotting confusion matrix for single task [with _=’binary’, task=’binary’, th=[6.5]].
- testPlotSingle_1_multi_class(**kw)
Test plotting confusion matrix for single task [with _=’multi_class’, task=’multi_class’, th=[0, 2, 10, 1100]].
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.plotting.tests.CorrPlotTest(methodName='runTest')[source]
Bases:
PlottingTest
Test correlation plotting class.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.plotting.tests.MetricsPlotTest(methodName='runTest')[source]
Bases:
PlottingTest
Test metrics plotting class.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- testPlotSingle = None
- testPlotSingle_0_binary(**kw)
Test plotting metrics for single task single class and multi-class [with _=’binary’, task=’binary’, th=[6.5]].
- testPlotSingle_1_multi_class(**kw)
Test plotting metrics for single task single class and multi-class [with _=’multi_class’, task=’multi_class’, th=[0, 2, 10, 1100]].
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.plotting.tests.PlottingTest(methodName='runTest')[source]
Bases:
ModelDataSetsPathMixIn
,QSPRTestCase
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel [source]
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.plotting.tests.ROCPlotTest(methodName='runTest')[source]
Bases:
PlottingTest
Test ROC curve plotting class.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- validate_split(dataset)
Check if the split has the data it should have after splitting.
- class qsprpred.plotting.tests.WilliamsPlotTest(methodName='runTest')[source]
Bases:
PlottingTest
Test plotting Williams plot for single task.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
- classmethod addClassCleanup(function, /, *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).
- addCleanup(function, /, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.
Cleanup items are called even if setUp fails (unlike tearDown).
- addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.
This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.
- Parameters:
typeobj – The data type to call this function on when both values are of the same type in assertEqual().
function – The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.
- assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.
- assertCountEqual(first, second, msg=None)
Asserts that two iterables have the same elements, the same number of times, without regard to order.
- self.assertEqual(Counter(list(first)),
Counter(list(second)))
- Example:
[0, 1, 1] and [1, 0, 1] compare equal.
[0, 0, 1] and [0, 1] compare unequal.
- assertDictEqual(d1, d2, msg=None)
- assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.
- assertFalse(expr, msg=None)
Check that the expression is false.
- assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.
- assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.
- assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.
- assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.
- assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
- assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.
- assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.
- assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.
- assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.
- assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.
- assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.
- Parameters:
list1 – The first list to compare.
list2 – The second list to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
This method must be used as a context manager, and will yield a recording object with two attributes:
output
andrecords
. At the end of the context manager, theoutput
attribute will be a list of the matching formatted log messages and therecords
attribute will be a list of the corresponding LogRecord objects.Example:
with self.assertLogs('foo', level='INFO') as cm: logging.getLogger('foo').info('first message') logging.getLogger('foo.bar').error('second message') self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
- assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.
- assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.
This method must be used as a context manager.
- assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).
Objects that are equal automatically fail.
- assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.
- assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.
- assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.
- assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.
- assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException): do_something()
An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.
The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:
with self.assertRaises(SomeException) as cm: do_something() the_exception = cm.exception self.assertEqual(the_exception.error_code, 3)
- assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.
- Parameters:
expected_exception – Exception class expected to be raised.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertRaisesRegex is used as a context manager.
- assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.
- assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.
- Parameters:
seq1 – The first sequence to compare.
seq2 – The second sequence to compare.
seq_type – The expected datatype of the sequences, or None if no datatype should be enforced.
msg – Optional message to use on failure instead of a list of differences.
- assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.
- Parameters:
set1 – The first set to compare.
set2 – The second set to compare.
msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).
- assertTrue(expr, msg=None)
Check that the expression is true.
- assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.
- Parameters:
tuple1 – The first tuple to compare.
tuple2 – The second tuple to compare.
msg – Optional message to use on failure instead of a list of differences.
- assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:
with self.assertWarns(SomeWarning): do_something()
An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.
The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:
with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147)
- assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.
- Parameters:
expected_warning – Warning class expected to be triggered.
expected_regex – Regex (re.Pattern object or string) expected to be found in error message.
args – Function to be called and extra positional args.
kwargs – Extra kwargs.
msg – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.
- clearGenerated()
Remove the directories that are used for testing.
- countTestCases()
- createLargeMultitaskDataSet(name='QSPRDataset_multi_test', target_props=[{'name': 'HBD', 'task': <TargetTasks.MULTICLASS: 'MULTICLASS'>, 'th': [-1, 1, 2, 100]}, {'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
preparation_settings (dict) – dictionary containing preparation settings
random_state (int) – random state to use for splitting and shuffling
- Returns:
a
QSPRDataset
object- Return type:
- createLargeTestDataSet(name='QSPRDataset_test_large', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42, n_jobs=1, chunk_size=None)
Create a large dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createSmallTestDataSet(name='QSPRDataset_test_small', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], preparation_settings=None, random_state=42)
Create a small dataset for testing purposes.
- Parameters:
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
preparation_settings (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- createTestDataSetFromFrame(df, name='QSPRDataset_test', target_props=[{'name': 'CL', 'task': <TargetTasks.REGRESSION: 'REGRESSION'>}], random_state=None, prep=None, n_jobs=1, chunk_size=None)
Create a dataset for testing purposes from the given data frame.
- Parameters:
df (pd.DataFrame) – data frame containing the dataset
name (str) – name of the dataset
target_props (List of dicts or TargetProperty) – list of target properties
random_state (int) – random state to use for splitting and shuffling
prep (dict) – dictionary containing preparation settings
- Returns:
a
QSPRDataset
object- Return type:
- debug()
Run the test without collecting errors in a TestResult
- defaultTestResult()
- classmethod doClassCleanups()
Execute all class cleanup functions. Normally called for you after tearDownClass.
- doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.
- classmethod enterClassContext(cm)
Same as enterContext, but class-wide.
- enterContext(cm)
Enters the supplied context manager.
If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__ method.
- fail(msg=None)
Fail immediately, with the given message.
- failureException
alias of
AssertionError
- classmethod getAllDescriptors()
Return a list of (ideally) all available descriptor sets. For now they need to be added manually to the list below.
TODO: would be nice to create the list automatically by implementing a descriptor set registry that would hold all installed descriptor sets.
- getBigDF()
Get a large data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- classmethod getDataPrepGrid()
Return a list of many possible combinations of descriptor calculators, splits, feature standardizers, feature filters and data filters. Again, this is not exhaustive, but should cover a lot of cases.
- Returns:
a generator that yields tuples of all possible combinations as stated above, each tuple is defined as: (descriptor_calculator, split, feature_standardizer, feature_filters, data_filters)
- Return type:
grid
- classmethod getDefaultCalculatorCombo()
Makes a list of default descriptor calculators that can be used in tests. It creates a calculator with only morgan fingerprints and rdkit descriptors, but also one with them both to test behaviour with multiple descriptor sets. Override this method if you want to test with other descriptor sets and calculator combinations.
- static getDefaultPrep()
Return a dictionary with default preparation settings.
- getModel(name: str, alg: ~typing.Type = <class 'sklearn.ensemble._forest.RandomForestClassifier'>) SklearnModel
Get a model for testing.
- Parameters:
dataset (QSPRDataset) – Dataset to use for model.
name (str) – Name of model.
alg (Type, optional) – Algorithm to use for model. Defaults to
RandomForestClassifier
.
- Returns:
The new model.
- Return type:
- classmethod getPrepCombos()
Return a list of all possible preparation combinations as generated by
getDataPrepGrid
as well as their names. The generated list can be used to parameterize tests with the given named combinations.
- getSmallDF()
Get a small data frame for testing purposes.
- Returns:
a
pandas.DataFrame
containing the dataset- Return type:
pd.DataFrame
- id()
- longMessage = True
- maxDiff = 640
- run(result=None)
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- setUpPaths()
Set up the test environment.
- shortDescription()
Returns a one-line description of the test, or None if no description has been provided.
The default implementation of this method returns the first line of the specified test method’s docstring.
- skipTest(reason)
Skip this test.
- subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
- tearDown()
Remove all files and directories that are used for testing.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- validate_split(dataset)
Check if the split has the data it should have after splitting.