qsprpred.benchmarks.settings package
Submodules
qsprpred.benchmarks.settings.benchmark module
- class qsprpred.benchmarks.settings.benchmark.BenchmarkSettings(name: str, n_replicas: int, random_seed: int, data_sources: list[qsprpred.data.sources.data_source.DataSource], descriptors: list[list[qsprpred.data.descriptors.sets.DescriptorSet]], target_props: list[list[qsprpred.tasks.TargetProperty]], prep_settings: list[qsprpred.benchmarks.settings.data_prep.DataPrepSettings], models: list[qsprpred.models.model.QSPRModel], assessors: list[qsprpred.models.assessment.methods.ModelAssessor], optimizers: list[qsprpred.models.hyperparam_optimization.HyperparameterOptimization] = ())[source]
Bases:
JSONSerializable
Class that determines settings for a benchmarking run.
- Variables:
name (str) – Name of the benchmarking run.
n_replicas (int) – Number of replicas to run.
random_seed (int) – Random seed to use.
data_sources (list[DataSource]) – Data sources to use.
descriptors (list[list[DescriptorSet]]) – Descriptor sets to use.
target_props (list[list[TargetProperty]]) – Target properties to use.
prep_settings (list[DataPrepSettings]) – Data preparation settings to use.
assessors (list[ModelAssessor]) – Model assessors to use.
optimizers (list[HyperparameterOptimization]) – Hyperparameter optimizers to use.
- checkConsistency()[source]
Checks if the settings are consistent.
- Raises:
AssertionError – If the settings are inconsistent.
- data_sources: list[qsprpred.data.sources.data_source.DataSource]
- descriptors: list[list[qsprpred.data.descriptors.sets.DescriptorSet]]
- models: list[qsprpred.models.model.QSPRModel]
- optimizers: list[qsprpred.models.hyperparam_optimization.HyperparameterOptimization] = ()
- prep_settings: list[qsprpred.benchmarks.settings.data_prep.DataPrepSettings]
- target_props: list[list[qsprpred.tasks.TargetProperty]]
qsprpred.benchmarks.settings.data_prep module
- class qsprpred.benchmarks.settings.data_prep.DataPrepSettings(data_filters: list | None = (<qsprpred.data.processing.data_filters.RepeatsFilter object>, ), split: ~qsprpred.data.sampling.splits.DataSplit = None, smiles_standardizer: str | ~typing.Callable = 'chembl', feature_filters: list = None, feature_standardizer: ~qsprpred.data.processing.feature_standardizers.SKLearnStandardizer = None, feature_fill_value: float = 0.0, shuffle: bool = True)[source]
Bases:
object
Class that determines settings for data preparation. These are arguments passed to
QSPRDataset.prepareDataset
.- Variables:
data_filters (list) – Data filters to use.
split (DataSplit) – Data split to use.
smiles_standardizer (str or callable) – Standardizer to use for SMILES strings.
feature_filters (list) – Feature filters to use.
feature_standardizer (SKLearnStandardizer) – Standardizer to use for features.
feature_fill_value (float) – Fill value to use for features.
shuffle (bool) – Whether to shuffle the data.
- feature_standardizer: SKLearnStandardizer = None