Quickstart¶
- Prepare data (Papyrus++)
python uqdd/data/data_papyrus.py \
--activity xc50 \
--descriptor-protein ankh-large \
--descriptor-chemical ecfp2048 \
--split-type time \
--n-targets -1 \
--file-ext pkl \
--sanitize \
--verbose
Outputs: preprocessed splits under data/ in the chosen format.
-
Train models
-
Baseline (PNN):
python uqdd/models/model_parser.py --model pnn --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name pnn-test
- Deep Ensemble:
python uqdd/models/model_parser.py --model ensemble --ensemble_size 10 --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name ensemble-test
- MC-Dropout:
python uqdd/models/model_parser.py --model mcdropout --num_mc_samples 100 --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name mcdp-test
- Evidential:
python uqdd/models/model_parser.py --model evidential --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name evidential-test
- Ensemble of Evidential (EOE):
python uqdd/models/model_parser.py --model eoe --ensemble_size 10 --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name eoe-test
- Evidential MC-Dropout (EMC):
python uqdd/models/model_parser.py --model emc --num_mc_samples 100 --data_name papyrus --n_targets -1 --activity_type xc50 --descriptor_protein ankh-large --descriptor_chemical ecfp2048 --split_type random --ext pkl --task_type regression --wandb_project_name emc-test
Tips:
- Use
--seed,--epochs,--batch_size, and--lrto control training. - Set
--device cudato train on GPU. - Logs can be sent to Weights & Biases via
--wandb_project_name.