Source code for qsprpred.models.assessment.regression

import pandas as pd

from sklearn import metrics


[docs]def create_correlation_summary(model): cv_path = f"{model.outPrefix}.cv.tsv" ind_path = f"{model.outPrefix}.ind.tsv" cate = [cv_path, ind_path] cate_names = ["cv", "ind"] property_name = model.targetProperties[0].name summary = {"ModelName": [], "R2": [], "RMSE": [], "Set": []} for j, _ in enumerate(["Cross Validation", "Independent Test"]): df = pd.read_table(cate[j]) coef = metrics.r2_score( df[f"{property_name}_Label"], df[f"{property_name}_Prediction"] ) rmse = metrics.root_mean_squared_error( df[f"{property_name}_Label"], df[f"{property_name}_Prediction"], ) summary["R2"].append(coef) summary["RMSE"].append(rmse) summary["Set"].append(cate_names[j]) summary["ModelName"].append(model.name) return summary